Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 80(16): 3305-3318, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32522823

RESUMO

There is currently a lack of precise predictive biomarkers for patient selection in clinical trials of inhibitors targeting replication stress (RS) response proteins ATR and CHK1. The objective of this study was to identify novel predictive biomarkers for the response to these agents in treating non-small cell lung cancer (NSCLC). A genome-wide loss-of-function screen revealed that tumor suppressor PPP2R2A, a B regulatory subunit of protein phosphatase 2 (PP2A), determines sensitivity to CHK1 inhibition. A synthetic lethal interaction between PPP2R2A deficiency and ATR or CHK1 inhibition was observed in NSCLC in vitro and in vivo and was independent of p53 status. ATR and CHK1 inhibition resulted in significantly increased levels of RS and altered replication dynamics, particularly in PPP2R2A-deficient NSCLC cells. Mechanistically, PPP2R2A negatively regulated translation of oncogene c-Myc protein. c-Myc activity was required for PPP2R2A deficiency-induced alterations of replication initiation/RS and sensitivity to ATR/CHK1 inhibitors. We conclude that PPP2R2A deficiency elevates RS by upregulating c-Myc activity, rendering cells reliant on the ATR/CHK1 axis for survival. Our studies show a novel synthetic lethal interaction and identify PPP2R2A as a potential new predictive biomarker for patient stratification in the clinical use of ATR and CHK1 inhibitors. SIGNIFICANCE: This study reveals new approaches to specifically target PPP2R2A-deficient lung cancer cells and provides a novel biomarker that will significantly improve treatment outcome with ATR and CHK1 inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/deficiência , Carcinoma Pulmonar de Células não Pequenas/química , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias Pulmonares/química , Proteína Fosfatase 2/deficiência , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Replicação do DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Genes p53 , Estudo de Associação Genômica Ampla , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Nus , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno
2.
Clin Cancer Res ; 24(7): 1629-1643, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29326282

RESUMO

Purpose: (i) To investigate the expression of the E3 ligase, RNF126, in human invasive breast cancer and its links with breast cancer outcomes; and (ii) to test the hypothesis that RNF126 determines the efficacy of inhibitors targeting the cell-cycle checkpoint kinase, CHEK1.Experimental Design: A retrospective analysis by immunohistochemistry (IHC) compared RNF126 staining in 110 invasive breast cancer and 78 paired adjacent normal tissues with clinicopathologic data. Whether RNF126 controls CHEK1 expression was determined by chromatin immunoprecipitation and a CHEK1 promoter driven luciferase reporter. Staining for these two proteins by IHC using tissue microarrays was also conducted. Cell killing/replication stress induced by CHEK1 inhibition was evaluated in cells, with or without RNF126 knockdown, by MTT/colony formation, replication stress biomarker immunostaining and DNA fiber assays.Results: RNF126 protein expression was elevated in breast cancer tissue samples. RNF126 was associated with a poor clinical outcome after multivariate analysis and was an independent predictor. RNF126 promotes CHEK1 transcript expression. Critically, a strong correlation between RNF126 and CHEK1 proteins was identified in breast cancer tissue and cell lines. The inhibition of CHEK1 induced a greater cell killing and a higher level of replication stress in breast cancer cells expressing RNF126 compared to RNF126 depleted cells.Conclusions: RNF126 protein is highly expressed in invasive breast cancer tissue. The high expression of RNF126 is an independent predictor of a poor prognosis in invasive breast cancer and is considered a potential biomarker of a cancer's responsiveness to CHEK1 inhibitors. CHEK1 inhibition targets breast cancer cells expressing higher levels of RNF126 by enhancing replication stress. Clin Cancer Res; 24(7); 1629-43. ©2018 AACR.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Quinase 1 do Ponto de Checagem/genética , Ubiquitina-Proteína Ligases/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Replicação do DNA/genética , Feminino , Humanos , Imuno-Histoquímica/métodos , Células MCF-7 , Prognóstico , Regiões Promotoras Genéticas/genética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...